
Current Status of the CARO

Malware Naming Scheme

Dr. Vesselin Bontchev, anti–virus researcher

FRISK Software International

Thverholt 18, IS–105 Reykjavik, Iceland

E–mail: bontchev@complex.is

Abstract: The CARO malware naming scheme was created more than

15 years ago. To this date, it remains the naming scheme that is the

most widely used in anti–virus products—despite being criticized left

and right and the fact that no product has absolute compliance with it.

One frequent criticism is that detailed documentation of the up–to–

date status of the Scheme is difficult to find and that this hampers the

Scheme’s popularity. This paper attempts to solve this problem. It

documents the CARO malware naming scheme completely, including

the recently introduced changes. It will be made freely available on the

Web and will be continuously updated as new changes are introduced.

Its purpose is to serve as an easily and publicly accessible documenta-

tion of the latest state of the CARO Malware Naming Scheme.

1. Introduction

In the first part of this paper we shall discuss why a malware naming scheme

is needed, the various unsuccessful malware naming schemes that have been tried in

the past and the history of the CARO Malware Naming Scheme.

1.1. The Malware Naming Mess

Practically since computer viruses first appeared, there has been a huge dis-

parity in the names used by the different anti–virus products for one and the same

malware program. And since about that time users have been complaining about it, as

it often leads to serious confusion.

 First, it can lead to failure of two people discussing a malware program to under-

stand each other unless both of them have a copy of the same program and know that it

is indeed one and the same malware program. For instance, if some user’s scanner de-

tects a virus and names it MyDoom.D, it is natural for the user to ask “What does this

virus do?.” Unfortunately, different scanners (or different versions of one and the same

scanner or even different virus definitions database updates of one and the same scanner)

can call different viruses by this name. Therefore, the anti–virus experts are unable to

help the user unless they receive a sample of the virus so that they can examine it. How-

ever, in several cases this is not possible or not allowed, for instance, if the user asks in

some kind of public forum where swapping of virus samples is discouraged, or if the

sample contains confidential information that the user is not willing to disclose (e.g., a

Microsoft Office document infected with a macro virus). In other cases, it may take a lot

of time until a sample is received by the anti–virus expert and the user often needs an

immediate answer, for instance when, due to the infection, the company’s machines are

down and further action would depend on what kind of damage this particular malware

program might have done.

2

 Second, many users use more than one scanner. The reason for this is that no

scanner is able to detect all known malware programs, but the different scanners usually

do not detect exactly the same subset of the known malware. Therefore, by using more

than one product, the users hope to increase their chances of detecting the particular

malware that might be attacking their machine(s). Unfortunately, if the different products

use different names for the same malware programs, this can lead to serious confusion.

In one particular case, a user reported that she used several different scanners and they

discovered many different viruses on her machine—namely, the viruses Kampana,

Telefonica, Telecom, Antitel, and Spanish. She used one of the products to

remove one of the viruses and the other products suddenly stopped reporting the other

viruses. From this, she concluded that the other viruses had noticed the death of their

friend and were now hiding. ☺ In reality, of course, these are five different names for

one and the same virus, used by different virus–specific programs.

Let us examine the various reasons why the malware naming mess exists

([Bontchev04]).

1.1.1. Glut

Although significant virus naming confusion existed even in the early days

when there were only a few dozen computer viruses in existence, nowadays one of the

main causes for this confusion is the ever–increasing speed at which new malware

programs appear and spread (or are distributed, in the case of non–viral malware).

The number of known malware programs nowadays probably approaches 200,000.

Even worse, nobody is capable of saying exactly how many such malware programs

exist without making an error of in the order of tens of thousands. Often more than

5,000 new malware programs appear monthly. Some of them cause real pandemics,

spreading all over the world in a matter of hours.

1.1.2. Lack of Time and Other Resources

The above reason leads us to the next one. Nowadays the anti–virus people are

simply physically incapable of examining every single new malware program that ap-

pears and agreeing on a common, reasonable name for it, nor is it physically possible

for anyone to go over all the existing malware and deciding exactly what the name of

each malware program should be. We are far too busy preparing speedy detection

(and only sometimes disinfection) of the new malware that constantly appears and

rushing it out the door to meet user demand.

Even worse, the people in our virus labs who are often the ones who imple-

ment detection of the new malware are competent enough to implement such detec-

tion (over time, we have made adding detection of new malware to our products a rea-

sonably fast and simple task, so it is easy to train people to do it) but they usually do

not have the much higher level of competence required to properly classify and name

a new malware program. The latter requires careful analysis of the malware and de-

tailed knowledge of thousands of other such malware programs, in order to classify

and name the new one correctly.

Finally, once we have chosen a name for a new malware program, it is often

too expensive to change it later if it is found to be “incorrect”. The original name

might have already gone into press releases, on–line virus descriptions and even

printed documentation. Changing it would cost both time, money and effort and

would be likely to lead to user confusion.

3

1.1.3. Lack of a Common Virus Naming Standard

In order to have the different anti–virus products name malware a uniform

manner, a common virus naming standard is needed. It has to have several properties

in order to be good enough and acceptable to everyone.

First of all, it has to make sense. Similar malware programs should have

similar names. Of course, how to define malware similarity is a completely different

question—it could be similarity in contents, similarity in behavior, similarity in other

properties or even similarity in time and/or place of discovery.

Second, it has to be understandable and usable by the general user. The user

can remember and report on the phone a name like “Melissa” but would have trou-

ble even pronouncing a name like “BfPsHgTx9435”.

Third, the standard should be usable by all (or at least by the vast majority) of

anti–virus products. This is not as easy to achieve as it might seem at first glance.

Contrary to popular belief, not all anti–virus products work by just looking for a

bunch of scan strings in all files. In fact, even products that look similarly to the user

often use wildly different technology for malware detection and have very different

internal limitations. For instance, the different scanners have different limits on the

maximal length of a malware name. For some scanners (e.g., F–PROT) this maximal

length cannot be determined in advance and depends on the contents of the name.

(The names are stored in Huffman–compressed form and the limit is on the size of the

compressed name, so the maximal length of the name the scanner can use depends on

how well this name compresses.) Other scanners can report malware names only in

upper case. Yet others have various limitations on what characters they can use in a

malware name. And so on and so forth. The various conditions, limitations and de-

pendencies are just too numerous to list here.

From the beginning, the CARO Malware Naming Scheme has striven to fulfill

this need. Unfortunately, CARO is not an official standard–setting body, so we are

unable to establish a standard. The best we could hope for was to come up with a

Naming Scheme that was good enough to be acceptable to the vast majority of anti–

virus producers and present it as a set of guidelines, hoping that these guidelines

would be widely adopted by the industry.

It is our belief that we have managed to achieve this goal. The reason why the

malware naming mess still exists is because we have not solved the other problems

listed in this section, but solving them has never been our goal and solving some of

them is obviously beyond our capability.

1.1.4. Lack of Reliable Means for Automatic Malware Identification

A good malware naming scheme specifies how the name of a new piece of

malware should be constructed. It does not, however, specify what the name of a par-

ticular piece of malware should be.

For instance, both “Win32/MyDoom.BQ” and “Win32/MyDoom.ED” are

valid virus names in the context of the CARO Malware Naming Scheme. But if one

scanner uses the first name for a particular virus and another scanner uses the second

one for the same virus, they are both compliant with the naming scheme yet we al-

ready have a naming confusion. The naming scheme cannot tell us which of the two

scanners is right and which is wrong. In fact, in certain circumstances they can both

be wrong yet still both be compliant with the naming scheme.

4

In order to resolve this problem, we need reliable means of mapping any given

malware program with its correct name, chosen in compliance with the naming

scheme. Unfortunately, in the general case, we do not have such means.

In some particular cases this problem has been resolved to a satisfactory de-

gree. For instance, in the case of macro malware, we have a tool (F–VBACRC) that

produces various kinds of identification data for a given macro malware program. The

data is produced by plug–ins supplied by several anti–virus producers (Computer As-

sociates, FRISK Software, McAfee, Symantec and others) and is sufficient for the re-

spective producer to implement detection, recognition, identification and removal of

the respective malware even without having a sample of it. Although neither set of

data identifies a macro malware program with 100% exactness (especially true in the

case of polymorphic viruses), the combined set of outputs from all the plug–ins is

usually sufficient to identify a particular macro malware program. Furthermore, as

new macro malware is discovered, its identification data is posted to a specialized

mailing list and kept in various repositories from where it can be extracted and ex-

amined later, when a need arises to determine whether a particular macro malware

program is a known one or not.

Unfortunately, we simply do not have an equivalent tool for the other kinds of

malware. (In fact, even in the macro malware field, there are some kinds of macro

malware—or macro malware supporting platforms, like Visio or Microsoft Access—

that the tool does not support and/or identify reliably.)

We do have somewhat similar tools for other classes of malware—but they are

vastly inferior and don’t cover all classes of malware anyway. For instance, we have

SCRID, a tool written by Dmitry Gryaznov from McAfee, which produces identifica-

tion data for script malware. Unfortunately, this tool does not support plug–ins (i.e., it

produces identification data that makes sense only to one particular anti–virus pro-

ducer) and it cannot sufficiently handle polymorphic script viruses or parasitic script

viruses.

We also have another tool, PEInfo, that outputs various useful information

about the structure and contents of a given PE–EXE file. This is often useful for iden-

tifying self–contained malware that resides in such files. Unfortunately, it cannot han-

dle parasitic and/or polymorphic viruses. Furthermore, we don’t have a repository

where we routinely announce the identification data of every new malware program

that the tool can handle.

With the lack of proper tools, the only way to solve the mapping problem

would be to have a “reference” malware collection, a high–quality malware collection

that contains every known malware program and that is organized in a way that would

permit easy determination of what the correct name of any given malware program is.

Unfortunately, given the huge number of malware in existence, it is simply humanly

impossible for any single person to maintain such a collection. What is needed is a

reasonably large team of highly competent anti–virus researchers, employed full–time

in the maintenance of such a collection.

Unfortunately, for various reasons this is not achievable, either. Virtually

every anti–virus researcher in the world who already has the level of competence re-

quired for such a job is already employed by some anti–virus company. The mainte-

nance of such a reference malware collection has do be done by completely independ-

ent people, in order to avoid various kinds of bias. But even without this requirement,

5

the anti–virus researchers with the required level of competence are already over-

loaded with everyday work in the companies that employ them and they simply can-

not afford to spend the additional time and effort necessary to properly maintain a ref-

erence malware collection.

Finally, besides the competence–related issues, there are the issues of trust.

Who should be allowed access to the reference malware collection? Answering this

question is not as easy as it might seem at first glance. It would be unwise to allow

full access to a huge collection of malware to just about anyone who happens to make

the claim of being an anti–virus researcher. Doing so is a sure–fire way for the collec-

tion to end up on the various virus exchange (VX) sites. On the other hand, how does

one ensure that a legitimate newcomer to the anti–virus industry does get access to the

collection?

If the maintainers of the collection only accept new malware and return only

the information on what the name of a particular submitted malware program should

be, this puts the person who submits a new malware program, but does not have ac-

cess to the collection at a significant disadvantage. They will have to wait until the

collection maintainers tell them what the name of the new malware should be (a proc-

ess which could take considerable time, especially if the submitted malware program

is indeed new and needs to be analyzed first) while at the same time those who are

considered trustworthy and have access to the collection (and who are competitors)

will have the unfair advantage of getting the new malware and implementing detec-

tion of it while the original discoverer is still waiting.

In order to resolve this problem, we need an identification tool that can pro-

vide identification data for any given malware (so that this data and not the malware

itself can be made available to anyone who needs the information) and automated

tools must exist for properly classifying and naming newly submitted malware (see

also the next subsection). Unfortunately, as already mentioned above, such tools sim-

ply do not exist, so we end up with a Catch 22 situation.�

1.1.5. Lack of Reliable Means for Automatic Malware Classification

When new malware is discovered, it is not sufficient to determine that it is, in-

deed, new (which is already difficult enough, as explained in the previous subsection).

It is also not enough to have a naming scheme that tells us how the name of the new

malware should be constructed. We also need to determine what exactly the new

name should be.

In a naming scheme based on classification and similarity (and all naming

schemes essentially are of this kind), we need tools to help us determine which known

malware is “most similar” to the new one—so that we can pick a name for the new

malware that is similar to that “most similar” known malware.

Depending on the naming scheme, determining similarity can range from

trivial to incredibly complex. For instance, if the naming scheme states that every

newly discovered piece of malware should be assigned a consecutive number and

have that number as a name, the process of determining similarity is reduced to de-

termining the highest known malware number and generating the next one. Other

naming schemes—e.g., based on date or place of discovery—require similarly simple

classification algorithms. Unfortunately, as we shall explain in section 1.2, such

naming schemes have other problems that make them unsuitable for a common mal-

ware naming standard.

6

The CARO Malware Naming Scheme is based on classifying malware into

groups (called “families”), based on their code similarity. Unfortunately, determining

code similarity is an extremely difficult task.

Again, partial solutions do exist for particular subclasses of malware. For in-

stance, in the macro malware field we use a tool called MIRA, developed by Costin

Raiu. This tool is run on a high–quality collection of macro malware, maintained by

the author of this paper. The tool then builds a database of neural networks for recog-

nizing the macro malware in the collection. This database, together with the tool, is

made available to the anti–virus researchers. When a new piece of macro malware

appears, the tool is run on it and it produces a list of the 10 most similar known pieces

of macro malware, as recognized by the neural networks, together with some number

reflecting the degree of similarity and ranging from 0 to 1. While this is not sufficient

for a fully automatic macro malware classification process, it greatly reduces the

amount of work for the anti–virus researchers. Once they get the output from the tool,

they usually need to look manually at just a few (1–5) existing pieces of macro mal-

ware in order to determine whether the new one is “sufficiently similar” to any of

them and whether it should be classified into an existing family.

A similar tool for script malware exists, although it is not as widely used,

mostly because nobody is willing to spend the time and effort necessary to maintain a

high–quality collection of script malware and routinely run the tool on it, in order to

produce an up–to–date database of neural networks that can be used for automated

classification of new script malware. (Contrary to some rumors, the author of this pa-

per is only human and can do only so much work, not everything that nobody else

feels like doing.☺)

The same principle is also applicable, to a certain degree, to non–parasitic bi-

nary viruses. Unfortunately, apart from some in–house experiments, no equivalent

tool is widely available to anti–virus researchers at this time, not to mention the

problems of maintaining a high–quality malware collection and regularly running the

tool on it, in order to produce a database for automated classification.

An additional problem that makes automated classification of binary malware

difficult is the fact that it often comes compressed with multiple executable compres-

sors (e.g., UPX, Ice, Petite, etc.) for obfuscation purposes. One and the same stand–

alone piece of malware (e.g., a particular Trojan) would look very different externally

when compressed with different executable compressors (or with several of them).

This makes automated classification of such malware even more difficult, because the

various packing levels will have to be stripped first and even this is a very non–trivial

probem.

1.1.6. Inability to Enforce a Particular Naming Scheme

No matter how good a naming standard, it is mostly worthless if nobody is

using it. And, as experience has demonstrated, some anti–virus producers would fol-

low their own malware naming scheme in royal disregard of any proposed standards.

In order to resolve this problem, some mechanism is needed for enforcing the

chosen malware naming standard. Some kind of official body should be able to test

how compliant any given product is to the standard and should have the power to pe-

nalize the producers of the non–compliant products and to force them to abide to the

standard.

7

Unfortunately, at this time no such official body exists. CARO is certainly not

“it”. We are not even an official organization—we are just a group of friends with

common interests and competence. We certainly do not have the power to enforce

anything on anyone. In fact, many of us don’t even have the power to impose a par-

ticular malware name on the companies we work for—let alone on anybody else.

Finding people willing to fulfil this “power vacuum” would not be difficult—

the author of this paper is confident that various government bureaucrats are just itch-

ing for the job. Unfortunately, willingness alone is not sufficient, or the results would

be disastrous. What is needed, above all else, is a very high level of competence and

qualification in the field of anti–virus research. Even the ability to test the detection

rate of known–virus scanners is clearly beyond the means of the average well–mean-

ing person, as the hundreds of ridiculously incompetent and flawed published anti–

virus product tests have unambiguously demonstrated. The level of competence

required to determine whether a scanner not only detects a particular piece of malware

but also names it correctly is even higher.

1.2. Alternate Malware Naming Schemes

In this subsection we shall examine the different computer malware naming

schemes that have been tried in the past and found to be unsuccessful ([Bontchev98]).

1.2.1. Geographic Naming

 In the early years of the virus era, when the viruses were few and far between, it

seemed natural to name them after the place where they were first discovered—similarly

to what is sometimes done for biological viruses. This is why, historically the very first

naming schemes were geographical. Viruses like Lehigh, Yale, Jerusalem, Vi-

enna, etc. were named after the places (universities or towns) where they were first dis-

covered.

Unfortunately, such a naming scheme has serious drawbacks. In the modern

world of electronic communications, malware programs often spread (or are distributed)

faster than the information about their discovery. Because of this, it is common that one

and the same malware program is given different names by the different anti–virus re-

searchers who independently discover it in different geographical places. In fact, new

malware often appears and spreads all over the world so fast (in a matter of hours) that it

is impossible to determine even the continent of their origin—let alone the country or

town.

Furthermore, the name itself contains no factual information that can be used to

recognize the malware, so it is not very useful when two people have to understand that

they are talking about the same malware. Finally, with the current boom in malware

creation, it is very often the case that several different malware programs are discovered

in one and the same geographical place, which again can lead to confusion.

1.2.2. Naming after the Infective Length

 Another common–sense way of naming malware (and particularly viruses) is

after their infective length, i.e., after the number of bytes they add to the infected objects.

This naming scheme is much better than the geographical one. It is more objective, uses

an important characteristic of the virus that can be used to identify it and so on. Unfortu-

nately, it also has some drawbacks.

8

First of all, some viruses add a different number of bytes to the objects they in-

fect, e.g., because they round the length of these objects up to the next multiple of 16, or

add random garbage at the end, or for other reasons. Second, there are some kinds of vi-

ruses, e.g., the boot sector viruses, for which the infective length is not clearly and un-

ambiguously defined. Third, many, often quite different, viruses have one and the same

infective length. Finally, humans often have problems remembering information that is

numeric only and are likely to make mistakes when reproducing it. This could lead to

confusion when a user reports a virus infection.

1.2.3. Descriptive Naming

 The next way to name malware is according to a description of its payload or of

some other characteristic behavior. This is how names like “Bouncing Ball”,

“Falling Letters”, etc. were constructed. Unfortunately, this naming scheme has

its drawbacks too.

First, many viruses do not have a payload at all and do not do anything unusual.

They just replicate in a rather straightforward way. Second, some quite different viruses

share one and the same payload. For instance, the Yankee Doodle tune is played by both

the Old_Yankee and the Yankee_Doodle viruses; the bouncing ball is displayed by

both Ping_Pong and one of the Murphy viruses; the falling letters effect is used by

both Cascade and the Falling_Letters_Boot viruses; turning the screen image

upside–down is used by both Flip and Mirror viruses, and so on. Third, different

anti–virus researchers could use different names to describe one and the same effect

(e.g., Bouncing Ball vs. Ping Pong; Cascade vs. Falling Letters, etc.). Fourth, in many

cases discovering the exact payload requires a careful analysis of the malware and this

could delay its naming.

1.2.4. Naming after Some Text Found in the Virus

 A simpler naming scheme is to name the malware after some text string found in

its body. Just like the previous ones, this naming scheme does not suffer from a lack

drawbacks.

First, many malware programs do not contain any characteristic text string. Sec-

ond, many malware programs contain texts which are offensive, obscene, or libelous and

are therefore inappropriate for common use as names. Third, it is often believed that us-

ing the same name as the author of the malware intended just boosts the malware crea-

tor’s ego and should, therefore, be avoided.

1.2.5. Bezrukov’s Naming Scheme

 An interesting naming scheme has been developed by the Russian anti–virus re-

searcher Nikolai Nikolaevich Bezrukov. According to it, each virus (it does not consider

non–viral malware) is named by a one– to three–character identifier, indicating the types

of objects that the virus infects, followed by the infective length of the virus, optionally

followed by a single letter, indicating the particular variant, if more than one virus with

the same identifier and infective length exists. For instance, a name like RCE–1808A

means that this is a virus which is memory–resident (R); infects COM (C) and EXE (E)

files; its infective length is 1808 bytes; and this is the first variant with such properties.

Boot sector viruses are named in a similar way, with a single letter indicating whether

they infect the MBR (P) or the DOS boot sector (B), followed by the contents (in hexa-

9

decimal) of the second byte of the infected boot sector—it is usually unique for most

boot sector viruses.

 Bezrukov’s virus naming scheme is significantly more advanced than anything

else described above. It allows the user to determine several important properties of the

virus from its name alone. In addition to his naming scheme, Bezrukov also developed a

scheme to compactly describe many other properties of the virus in a single and rela-

tively short strings of letters and numbers. Such compressed descriptions can be further

used by programs that automatically generate a natural–language textual description of

the virus.

This naming scheme does not lack drawbacks either, but they are far less signifi-

cant than the drawbacks of the previous naming schemes. Bezrukov’s virus naming

scheme has the following drawbacks. First, the virus names are relatively difficult for

humans to remember. For instance, a name like Cascade is much easier to remember

than the name RC–1701A. Second, with this naming scheme several completely differ-

ent viruses can have a similar–looking name. For instance, one of the Phoenix viruses

is also a memory–resident COM file infector with infective length 1701 bytes. Therefore,

its name would be RC–1701B or something like this, regardless of the fact that the virus

has absolutely nothing to do with the Cascade virus.

1.2.6. Numeric Naming

Another possible naming scheme is to use some sequence of numbers for

identifying any particular piece of malware. The numbers can be derived from the

date of discovery and/or could be simply incremented sequentially as new malware is

discovered.

This naming scheme also has several major problems. First, such a number

carries virtually no information about any properties of the malware (except perhaps

about the date of discovery). To a certain degree, this problem can be alleviated by

maintaining some kind of global reference database that describes the important prop-

erties of every known malware, given its numeric name. Second, two very similar

malware variants could have very different names, which tends to be confusing.

Third, most people have trouble remembering meaningless numbers, so they are

likely to make mistakes when reporting which particular virus has infected their com-

puter.

1.3. History of the CARO Malware Naming Scheme

The original CARO Naming Scheme was created at a meeting of CARO (the

Computer Anti–virus Researchers Organization) in 1991, by a committee consisting of

Friðrik Skúlason (FRISK Software International and then Virus Bulletin’s technical

editor), Dr. Alan Solomon (then from S&S International) and Vesselin Bontchev (then

from the Virus Test Center, University of Hamburg). After several discussions, this

committee decided that the fundamental principle behind the naming scheme should be

that malware (mainly viruses) should be grouped into families, according to the similar-

ity of its programming code. The committee also produced a document ([Bontchev91]),

describing what a full malware name consisted of, according to this naming scheme, and

how the various parts of it were to be constructed. While this was still humanly possible

(i.e., when the number of known malware did not exceed 10,000), this committee met

regularly at anti–virus conferences and also decided what the name of each known mal-

ware program should be, according to this naming scheme.

10

The first major revision of the Naming Scheme was completed in 2002 and a de-

scription of it was published in [FitzGerald02]. However, both Nick FitzGerald’s paper

and the original naming document were relatively difficult to find. This has drawn end-

less criticisms that a formal reference description of the Scheme was not publicly avail-

able and that this has prevented many anti–virus producers from following it.

Of course, such criticisms are ill–founded. Anybody who was really interested in

a description of the Naming Scheme could obtain a copy of it, e.g., by asking one of its

original authors. The real reasons for the malware naming mess are not the difficulty to

find a description of the Naming Scheme but the ones described in section 1.1. Never-

theless, an easily accessible, up–to–date description of the Scheme should indeed be

publicly available, and this is what the present paper aims to achieve. An HTML version

of it will be made available, after the Virus Bulletin 2005 Conference, at

http://www.people.frisk–software.com/~bontchev/papers/naming.html

and will be constantly kept up to date, in order to reflect any future modifications. It

already reflects the modifications that have been made in the Scheme since 2002.

2. Description of the CARO Malware Naming

Scheme

The second part of this paper is dedicated to the description of the CARO

Malware Naming Scheme.

2.1. General Format

As mentioned in section 1.3, the fundamental principle behind the CARO

Malware Naming Scheme is that malware should be grouped into families, according

to its code similarity. The other fundamental principle is that malware names should

be unique—that is, every different malware variant, no matter how minor, should

have a different name from that of any other malware.

The general format of a Full CARO Malware Name is

[<type>://][<platform>/]<family>[.<group>][.<length>].<variant>[<modifiers>][!<comment>]

where the items in square brackets are optional. According to this format, only the

family name and the variant name of a piece of malware are mandatory and, as we

shall see later, even the variant name can be omitted when reporting it. The Full Name

is white space–delimited. That is, it cannot contain white space (i.e., space, tab, car-

riage return, line feed), and there is a white space before and after it.

In the following sections we shall describe the various parts of the full mal-

ware name in detail.

2.2. Malware Type

The type part of the full malware name in the CARO Malware Naming

Scheme indicates, unsurprisingly, the type of malware is, e.g., virus, Trojan, etc. Cur-

rently, the Naming Scheme permits the following different types:

• virus. Basically, a virus is a program (or a set of programs) that can rep-

licate itself recursively (i.e., the replicant is also a virus). For a formal

definition see, for instance, [Bontchev98]. Note that whether the malware

performs some other (e.g., destructive) action besides self–replication is

11

considered irrelevant for the purposes of determining its type. In some

cases, the recursive replication cannot continue ad infinitum but stops after

a certain number of generations. Such malware is also classified as a “vi-

rus”, if the number of generations is larger than one; otherwise it is classi-

fied as an “intended” (see below). For macro viruses for platforms that use

the concept of “global template” (e.g., Microsoft Word), a single “genera-

tion” is defined as infecting the global template from an infected document

and then infecting a document from an infected global template, or, if the

virus does not infect the global template, infecting a clean document from

an infected one.

• dropper. This is malware that does not replicate itself but which releases

self–replicating malware (i.e., viruses). It does not matter whether the virus

is released on disk or only in memory, although in the latter case some

anti–virus researchers prefer to use the term “injector”. Normally, the

family name of a dropper (see section 2.4) must be the same as the family

name of the virus it releases. If, however, it can release more than one vi-

rus (the so called “multi–droppers”), it is acceptable to use a different

family name or even to classify the malware differently (e.g., as a “tool” or

as a “trojan”; see below).

• intended. An “intended” is malware written with the obvious intent to

write a virus but which fails to replicate, usually due to some bug. Unfor-

tunately, the definition of “intent” is highly subjective, so it is not possible

to give a formal definition for this malware type.

• trojan. A “trojan” is malware that does not even try to replicate itself

but which performs some intentionally destructive action, without cor-

rectly warning the user. Again, “intentionally”, “destructive”, “correctly”

and “warns” are highly subjective terms. Consider, for instance, a disk

formatting program that warns the user in Swahili that it is going to de-

stroy the contents of the hard disk and which assumes that the default an-

swer is “yes”. Is such a program a Trojan or not? So, no formal definition

of this malware type is possible.

• pws. A “password stealer” is a program, the main purpose of which is to

steal passwords. Often (but not always) this is achieved via some kind of

keyboard logging. Some anti–virus researchers prefer to classify such pro-

grams as “trojans”, but CARO has decided that a special malware type for

them is needed in the Naming Scheme.

• dialer. This is a program that installs itself in the chain of programs in-

voked when the computer is establishing a dial–up connection. The pur-

pose of such a program is to force the connection to the Internet to go

through a particular premium phone number. Not all programs of this type

are malicious, some are used quite legitimately for micro–payments. The

vast majority of them are malicious, though; their only purpose is to steal

money from the victim by forcing them to dial a particular premium phone

number. Whether a dialer is non–malicious is determined by whether it

properly informs the user of its actions and whether it is easily uninstalled.

Again, some anti–virus researchers prefer to classify the malicious “dial-

12

ers” as “trojans”, but CARO has decided that a special malware type for

them is needed in the Naming Scheme.

• backdoor. This is a program that allows access to the machine on which

it has been installed, access that circumvents the legitimate login authenti-

cation procedures for that machine. Note that it is perfectly possible for a

“backdoor” to use a login authentication procedure on its own so that only

a particular attacker is granted access to the compromised machine; not

just anyone. Not all backdoors are installed by external attackers, some-

times a system program shipped with the machine can be a backdoor, e.g.,

because the vendor has forgotten to disable some undocumented way of

accessing the machine, one that had been put there originally for debug-

ging purposes. Again, some anti–virus researchers prefer to classify such

programs as “trojans”, but CARO has decided that a special malware type

for them is needed in the Naming Scheme.

• exploit. An “exploit” is a way of bypassing the security of a program or

an operating system, usually because of some kind of bug. Programs that

demonstrate such security flaws are also called “exploits”. It is highly rec-

ommended that Mitre’s CVE/CAN vulnerability names ([Mitre]) are used

as “family names” (see section 2.4) when reporting exploits.

• tool. A “tool” is a program that is not dangerous to the user who runs it,

but that can be used to produce malicious programs or to perform mali-

cious actions. A typical example is a virus construction kit, a program for

automated construction of new computer viruses. (It does not matter

whether they are constructed in ready–to–execute form or only in source.)

In the past, the Naming Scheme used to have the malware type “kit” which

meant exactly that. However, it was decided to rename this malware type

and to extend its meaning to cover construction kits for other kinds of

malware, password cracking tools, and all other kinds of tools used by the

attackers.

• garbage. The type “garbage” is reserved for the various programs that

do not perform any meaningful action (usually due to bugs) and do not

even try to be viruses (or they would be classified as “intended”) but

which tend to float around in the various low–quality virus exchange col-

lections and which are often included in the test sets used by incompetent

testers to test virus scanners. As a result, many vendors have given up and

decided that it is more cost–effective to implement detection of them in-

stead of educating the testers.☺ In some special cases buggy viruses can

produce non–replicable replicants; these should also be classified as “gar-

bage”.

In some cases, a piece of malware matches the definitions of several of the

permitted types described above, e.g., it can be both a “virus” (in the sense that it rep-

licates itself) and a “dropper” (in the sense that it drops another virus). In such cases it

should be classified as the worst type, the definition of which it matches. The permit-

ted malware types are listed above in such an order, with “virus” being the worst.

Therefore, in our particular example, the “virus and dropper” malware should be clas-

sified simply as “virus”.

13

Currently, the above malware types are the only malware types permitted by

the CARO Malware Naming Scheme. Notably, there is no special malware type for

“worm; these should be classified as “viruses”. The reason for this is that it seems im-

possible to reach an agreement among anti–virus researchers on what, exactly, a

worm is. There are at least three fundamentally different definitions of this term and

different anti–virus researchers prefer different definitions. In order to avoid confu-

sion, the Naming Scheme does not use such a malware type at all. If an anti–virus

producer feels that they absolutely must report that something is a worm (according to

their pet definition of this term), they should put this information in the comment field

(see section 2.9).

In addition, there are no malware types for “spam”, “adware”, “spyware”,

“phishing scam”, “non–malicious application” or “unwanted application”, despite the

fact that some anti–virus vendors have chosen to report such things with their prod-

ucts. Although CARO has considered proposals for adding special malware types for

these to the Naming Scheme, it was decided that either the definitions of these terms

were too imprecise or there was insufficient need for them (e.g., because it is not

really the job of an anti–virus program to report such things). However, malware

types might be introduced for them in the future (and/or for other things as well).

When/if this happens, it will be reflected in the on–line version of this document.

2.3. Platform

The platform part of the full malware name in the CARO Malware Naming

Scheme specifies the platform on which the malware works. This can be an operating

system (e.g., “PalmOS”), a set of operating systems (e.g., “Win32”), an application

(e.g., “ExcelMacro”), or a language interpreter (e.g., “VBS”). It is not, however, a file

type. For instance, the platform of a virus written in the Visual Basic Script language

must be “VBS”, even if that particular virus is designed to reside only in HTML or

only in CHM or only in PDF files.

Each platform name exists in two forms, a long form and a short form, al-

though in some cases the two forms can be identical. Either of the two forms can be

used when reporting some malware, although in practice most producers tend to pre-

fer the short form.

A complete list of the platforms allowed by the CARO Malware Naming

Scheme is given in Appendix A. Platforms exist, which are not listed there, for which

malware is possible, but for which no known malware yet exists. These platforms are

intentionally not listed, in order not to encourage the virus writers. CARO has decided

on names for some of them, but these names will not be made public until malware

for the respective platform appears.

The platform “DOS” is the default platform and should be omitted when re-

porting malware.

Some malware can work on more than one platform. For instance, there are

macro viruses that infect both Microsoft Word (the “W97M” platform) and Microsoft

Excel (the “X97M” platform). In other cases malware can consist of multiple compo-

nents, each component written for a different platform. For instance, a script virus

could consist of both VBScript and JavaScript components, all of them co–existing in

the same infected HTML document. Or a Win32 worm could drop script and/or

macro components, which might not even be viral by themselves, but which ensure

14

the replication (or at least the activation) of the Win32 executable. There are several

ways to handle such cases.

The most correct, formal way is to list alphabetically all the relevant platforms

between curly braces and separated by commas, e.g.,

virus://{VBS,W97M,Win32}/Foo.A@mm

However, this makes the full name look rather clumsy and many products

have problems handling such long malware names. Therefore, the Naming Scheme

permits the use of the artificial platform “Multi” in such cases. For multi–platform

macro viruses only, the artificial platform “O97M” is also a permitted abbreviation,

although it is deprecated in favor of “Multi”.

Finally, reporting multi–platform malware with just the platform on which it

has been detected, is permitted. For instance, the VBScript component of the imagi-

nary virus mentioned above may be reported as “VBS/Foo.A”, the Word97Macro

component may be reported as “W97M/Foo.A” and the Win32 component may be

reported as “W32/Foo.A”. Similarly, a macro virus that infects both Word docu-

ments and Excel spreadsheets may be reported as “W97M/Bar.A” when found in

Word documents and as “X97M/Bar.A” when found in Excel spreadsheets, even if

it looks exactly the same in both places.

2.4. Family

The family name is the only part of the full malware name that a virus scanner

must report when it believes that it has detected the malware. One of the fundamental

principles of the CARO Malware Naming Scheme is that malware should be grouped

into families, according to the similarity of its code. This is useful to the developers of

anti–virus software, because malware that it programmed in a similar way usually

needs similar methods of detection and removal. So, the fact that, e.g., a new virus is

classified into a particular known family conveys to the anti–virus researchers the use-

ful hint that some of the detection and disinfection methods for the other, already

known members of that family might be applicable (possibly with some modifica-

tions) to the new virus too.

2.4.1. General Format

The family name is constructed from the characters of the character set [A–

Za–z0–9_–] that is, upper– and lowercase letters, digits, underscore and minus. No

other characters are allowed in a family name. In particular, the characters ‘%’ and ‘&’

are not allowed. If somebody wants to include the words “percent” or “and” in a fam-

ily name, they should use “_Pct_” (or “_Pct”, if at the end of the family name) and

“_And_”.

Spaces are also not allowed in a family name (or, in fact, anywhere in a full

malware name). Those who want to use multi–word family names should use under-

score characters instead of spaces. Alternatively, they can simply join the words to-

gether and use uppercase letters for the first character of every word and lowercase

letters for the remaining characters of the words. For instance, “My Party” is not a

valid family name (because it contains a space) but both “My_Party” and

“MyParty” are valid family names. Using more than one underscore characters con-

secutively (e.g., “My__Party” is strongly discouraged for aesthetic reasons.

15

Furthermore, the letter case is considered irrelevant when comparing two dif-

ferent family names—so, “MyParty”, “myparty”, “MYPARTY” and “mYpArTy”

are one and the same family name although the first form is “best” for aesthetic rea-

sons. This rule was introduced in the naming scheme in order to accommodate some

anti–virus products that had the limitation that they could only report the names of

detected malware in uppercase.

One final limitation is that the family name must not be more than 20 charac-

ters long. In fact, even this limit is considered rather large. The only reason why it

was introduced was for historical reasons, in order to accommodate monstrously long

family names like “Green_Caterpillar”. In practice, shorter names are pre-

ferred, although this suggestion should not be taken to the extreme; i.e., do not shorten

the family name to the point of unintelligibility.

2.4.2. Rules for Constructing Proper Family Names

While the construction of the other parts of the full malware name in the

CARO Malware Naming Scheme is more or less obvious, the construction of the

family name (even while adhering to the formatting rules listed in the previous sec-

tion) is given to “artistic interpretation”. It is not possible to provide formal rules for

constructing the family name of a new piece of malware that is not related to any of

the already existing malware families. All we can do is provide some guidelines on

how to construct good family names.

Don’ts…

• Do not use company names, brand names, or names of living people. Us-

ing the name of the malware author is permissible but only when the mal-

ware is provably written by that person, and even then it is discouraged.

Common first names are also permissible, but should be avoided, if possi-

ble. It is explicitly forbidden to use names associated with the anti–virus

and computer security industry.

• Do not use an existing family name unless the malware indeed belongs to

that family by code similarity. Note that this applies solely to the family

name part of the full malware name. Using the same family name for a

VBS virus as an existing Word97Macro virus or Win32 Trojan is wrong

unless there is good reason to consider them closely related (there are

strong code similarities, they are different components of the same mal-

ware for different platforms, etc). Being on different platforms alone does

not justify the re–use of a family name.

• Do not invent a new family name if there is an existing, acceptable name.

This is the inverse of the previous rule. If a new piece of malware is

‘clearly’ a new member of an existing family, put it in that family. Just be-

cause it has a different payload or trigger condition or is even attributed to

a different writer, this does not necessarily justify the creation of a new

family.

• Do not use obscene or offensive names. Following this rule for the English

language is a must. It is recommended that it is followed for other lan-

guages as well, but, naturally, the anti–virus researcher naming a new

malware family cannot be expected to know whether a text string found in

the malware is some obscenity in some obscure language. Also, “offen-

16

sive” is very difficult to define since different things are offensive to the

different people and cultures. In any case, in order to err on the safe side,

names with religious meaning should be avoided, since this is a touchy

subject in many cultures.

• Do not assume that just because a sample arrives with a particular name,

that this is its correct name. This is especially important when processing

presumably sorted collections from other researchers.

• Do not use numeric family names. There is one exception to this rule; see

section 2.4.3.

• Do not use as family names words that are used in the other parts of the

full name. For instance, “W97M” is an invalid family name, because it is a

standard platform name.

• Do not use words that are too common, too generic and/or non–descrip-

tive. For instance, “virus”, “network”, “infector”, etc. are extremely bad

family names.

Dos…

• Avoid the name suggested by the author of the malware writer. When no

obviously better name is possible, it is acceptable to “pervert” (e.g., mis-

spell or reverse) the name suggested by the author.

• Avoid naming malware after a file that traditionally or conventionally

contains the malware. Many mass–mailing viruses send themselves with a

fixed filename for the attachment, but a later variant of the same family

might use a different filename and become much more widespread and

better known.

• Avoid naming a family after the activation date of the payload of some

variant (e.g., “Friday_the_13th” is a bad family name). The reason

for this rule is that the activation date is likely to be different (it’s one of

the easiest things to change) in other variants of the same family and the

name would be misleading for them.

• Avoid geographic names which are based on the discovery site. The same

malware might appear simultaneously in several different geographic

places.

• If multiple acceptable names exist, select the original one, the one used by

the majority of existing anti–virus programs or the more descriptive one.

Generally, the name chosen by the researcher who first ‘isolates’ a piece of

malware has primacy, unless it is shown to be a poor choice. In such cases

agreement on a better name should be sought by discussion between re-

searchers.

2.4.3. Special Family Names

With 200,000 different known malware programs belonging to hundreds of

different families, it is not always easy to pick a good new family name. It is espe-

cially annoying to do this for every new, trivial, do–nothing–in–particular virus that

appears and happens to be sufficiently dissimilar to all the known virus families. In

order to alleviate this problem a little, several artificial virus families have been cre-

17

ated. The members of these families are not grouped by code similarity. Instead, they

are grouped together by a few particular important properties.

It should be noted, however, that these artificial families apply mostly to 16–

bit DOS viruses. As such, they are mainly of historical interest. Nowadays, the vast

majority of new malware programs are 32–bit Windows programs and, of them, about

95% are non–viral malware (mostly various Trojan horses, backdoors, keyloggers,

password stealers, etc.). Therefore, the above artificial families are very rarely used

for contemporary new malware.

The artificial virus families and the common properties of their members are

listed in the following table:

HLLC Companion viruses written in some high–level language

HLLO Overwriting viruses written in some high–level language

HLLP Parasitic viruses written in some high–level language

SillyB Trivial (small, with no payload) viruses that infect the DOS Boot Sector

of the hard disk

SillyC Short, non–memory–resident viruses with no payload that infect parasiti-

cally and only COM files

SillyCE Short, non–memory–resident viruses with no payload that infect parasiti-

cally both COM and EXE files

SillyCER Short, memory–resident viruses with no payload that infect parasitically

both COM and EXE files

SillyCR Short, memory–resident viruses with no payload that infect parasitically

and only COM files

SillyE Short, non–memory–resident viruses with no payload that infect parasiti-

cally and only EXE files

SillyER Short, memory–resident viruses with no payload that infect parasitically

and only EXE files

SillyOR Short, memory–resident overwriting viruses with no payload

SillyP Trivial (small, with no payload) viruses that infect the Master Boot Rec-

ord of the hard disk

Trivial Short (100 bytes of code or less, text messages excluded) overwriting vi-

ruses with no payload

Another special case is parasitic viruses that have not yet been analyzed and

for which no obviously good family name has been selected. Such viruses may be as-

signed “temporary” family names consisting of their infective length, preceded by an

underscore, e.g., _1234. However, every effort should be made to avoid such tempo-

rary names. If they have to be used, every effort should be made to analyze the virus

as soon as possible, select a proper family name for it, and rename the temporary

family name to the newly selected one.

2.4.4. Malware Relationship

 As already mentioned several times, the CARO Malware Naming Scheme is

based on grouping malware into families, according to its code similarity. Unfortunately,

as mentioned in section 1.1.5, there are no reliable, automated means for determining, in

the general case, whether newly discovered malware belongs to a known malware fam-

ily and which one. In this section we shall try to give at least some guidelines to follow

when determining malware relationship ([Bontchev91]).

18

 The main idea behind this method of malware classification is to make sure that

 a) Non–related pieces of malware belong to separate malware families and

 b) Related, but different malware that can be disinfected in exactly the same

way are classified as different variants of one and the same malware family.

 In order to achieve the above, the following rules are applied when considering

the relationship between any two pieces of malware, A and B:

 Rule #1: If the malware is encrypted or packed in any other way, decrypt and/or

unpack it and consider the decrypted body when applying the following rules. If the

malware is polymorphic, do not consider the variable part (i.e., the decryptor) in the

comparison. Also, during the comparison, ignore the contents of any data areas present

in the malware. Unfortunately, the latter usually requires manual analysis of the malware

and cannot be done fully automatically, although some aspects of it can be automated.

 Rule #2: If there are fundamental structural differences in how A and B infect the

same program (or replicate; if they are not parasitic viruses)—for example, if one of the

two viruses appends its code at the end of the infected files, while the other one prepends

its code at the front of them—then the viruses belong to two different families. However,

this rule does permit A and B to be classified in the same family, even if one of them

infects only COM files, while the other one infects both COM and EXE files, provided that

they infect these files in a structurally similar way.

 Rule #3: If the function

 Related (A, B)

 returns TRUE, then the viruses A and B belong to the same malware family. The

function Related (x, y) is described below.

 Rule #4: If there exists a malware X such that the expression

 Related (A, X) AND Related (B, X)

 is true, then the two pieces of malware, A and B, belong to the same virus family as

X.

 Rule #5: If there exist two pieces of malware, A’ and B’, where the following

holds true

 (A’ and B’ are known to belong to the same family) AND

Related (A, A’) AND Related (B, B’)

 then the two pieces of malware A and B belong to one and the same malware family

(the same malware family to which A’ and B’ belong). Otherwise, A and B belong to

two different malware families.

 Rule #6: If the two pieces of malware, A and B, belong to one and the same

malware family but have different infective length or cannot be disinfected in exactly the

same way, then they belong to two different variants of this malware family.

 The function Related (X, Y) compares two blocks of code X and Y and returns

TRUE if the block X has a significant amount of code in common with block Y. The

function is implemented in the following way:

 Related (X, Y) ::= Average (Substrings (X, Y, N) / (Length (Y)—N + 1),

 Substrings (Y, X, N) / (Length (X)—N + 1)) > LIMIT;

19

 where

Substrings (u, v, t) is the number of all substrings of u of length t found within v. For N

about 12–16, the value of LIMIT is usually 0.5–0.6, this is enough to detect the viruses

which are related. For unrelated viruses, the expression on the left side of the greater–

than sign usually evaluates to 0.05 or less.

2.5. Group

The group part of the full malware name in the CARO Malware Naming

Scheme is used when a large subset of a malware family contains members that are

sufficiently similar to each other and sufficiently different from the other members of

the same family, yet at the same time the members of this subset are not similar

enough to each other to be classified as variants. A typical example are the AutoCAD

viruses which are clearly a clone of the Jerusalem virus.

The rules for constructing a group name are the same as those for constructing

a family name.

Group names are preserved mostly for historical purposes, because removing

them would involve renaming a lot of well–established malware names. However,

their use is deprecated and it is strongly recommended that they are not used when

new malware (that doesn’t belong to the already existing groups) is discovered.

2.6. Length

The length part of the full malware name in the CARO Malware Naming

Scheme indicates the infective length of the particular piece of malware. It makes

sense to use it only for viruses that infect parasitically, although, for historical rea-

sons, it is also used for some small companion viruses.

Even in the case of parasitic viruses, their infective length is not always easy

to determine. For instance, the original Jerusalem virus prepends 1808 bytes at the

beginning of the COM files it infects, but it appends 1813 bytes at the end of the

EXE files it infects. Other viruses pad with random bytes the size of the files they in-

fect to some multiple (usually 16), so they do not always increase the size of the in-

fected files by one and the same number. Some kinds of parasitic viruses, the so

called “cavity” viruses, overwrite parts of the files they infect that originally con-

tained zeroes (or some other constant). Although such viruses have an infective

length, this is not immediately obvious to the user, since the infected object does not

increase in size by that length.

Originally, the infective length was made part of the full malware name be-

cause it reported an important property of the malware, the size by which the infected

files increased. This made it both easier for the user to recognize the infection (at that

time many people used to remember the original sizes of important system files such

as COMMAND.COM) and served as an important prompt to the developer of anti–virus

software, because it indicated how many bytes had to be removed from the infected

file during disinfection.

Nowadays this is no longer a significant factor. There are thousands of system

files on the users’ machines and hardly any user remembers their exact size. The most

successful viruses nowadays are self–contained worms that do not infect parasitically.

The size of the viruses used to be a few hundred bytes to a few kilobytes—i.e., a

number easily remembered—while nowadays viruses that are dozens to hundreds of

20

kilobytes are the rule, not an exception. In addition, they are often compressed with

some kind of executable compressor (e.g., UPX, Ice, etc.) and their exact size is

meaningless both to the user and to the developers of anti–virus software, who are

now more concerned with implementing detection of the malware instead of surgical

disinfection, reasoning that detection alone is sufficient for the on–access scanner (or

the e–mail scanner) to protect the machine from becoming infected in the first place,

so the ability to disinfect is of secondary importance. Finally, these days, viruses (let

alone parasitic viruses) are not even the most widespread kind of malware, various

kinds of Trojan horses appear much more often. This is why using the infective length

in newly discovered malware should be avoided, unless there is a good reason not to.

In particular, the infective length is not used in macro and script viruses, in vi-

ruses written in a high–level language, in non–parasitic viruses, in Win32 viruses, in

viruses that have a very large infective length (more than 50 Kb) and in non-viral

malware.

There is one exception in the case of macro viruses. When the virus is a multi–

component virus and one of its components has an infective length, that length is used

when naming the macro component too, even if it doesn’t apply directly to it. For in-

stance the infective length is used in the name of the

{W32,W97M}/Beast.41472.A virus, even though the size of its Word97Macro

component is not 41472 bytes long.

The length, when used, is always a number, i.e., it can contain only decimal

digits.

2.7. Variant

The variant part of the full malware name in the CARO Malware Naming

Scheme is used to distinguish between different malware programs that belong to the

same family (and to the same group, and have the same infective length, when these

parts of the full name are present).

For malware that does include an infective length component in its full name

(i.e., for relatively small parasitic binary viruses), the variant names usually serve to

distinguish between minor patches. For all other kinds of malware (non–viral mal-

ware, non–parasitic viruses, macro and script viruses, etc.) the variant names are the

main hierarchical level at which different members of the same family are distin-

guished.

2.7.1. Variant Naming

The variant name consists of upper case letters, assigned consecutively as each

new variant in a malware family is discovered. “Consecutively” means that the first

variant of a malware family always has the variant name A, the next one—B and so

on. When the variant name Z is reached, the next discovered malware program in that

family is assigned the variant name AA, then AB, etc. till AZ, then BA, BB, … BZ, CA,

CB, … CZ, … ZZ, AAA, AAB, … ZZZ, AAAA, and so on.

Note that the order in which the variant names are assigned reflects the order

of their discovery, not the apparent order of their creation or any other order. This is

the main point where naming confusion occurs between the different anti–virus prod-

ucts. While new families are discovered relatively rarely and there is usually time to

synchronize their names among the anti–virus companies that are willing to make the

21

necessary effort, new variants appear very frequently (sometimes several per day)

and, given the lack of precise identification tools mentioned in section 1.1.4, it is often

too problematic to achieve variant name synchronization among the different anti–vi-

rus products. Any serious attempts to reduce the malware naming mess should con-

centrate on this issue.

2.7.2. Variant Reporting

Another important point to note is that the variant name (together with the

family name) is a mandatory part of every malware name in the CARO Malware

Naming Scheme. Every other part (type, platform, length, modifiers, comment) can be

missing, but the family name and the variant name must be present, even if there is

only one known variant that belongs to the respective family. That is, if the family

Foo consists of only a single member, its name should be Foo.A (or Foo.1234.A,

if the infective length part makes sense for it and if it is 1234 bytes) and not just Foo

(or Foo.1234).

However, when anti–virus products report malware, they are allowed (and

even encouraged) to omit the variant name part, if they are unable to distinguish be-

tween the different variants in the same family. That is, if a scanner is unable to dis-

tinguish between the Foo.A and Foo.B viruses, it should report just Foo. The same

rule also applies to the group name and the infective length, if they are part of the full

name of the malware. That is, if a scanner is unable to distinguish between different

group members in a family, it should report only the family. Similarly, if it is unable

to distinguish between viruses with different infective lengths, it should report only

the family part of their names (and also the group part, if it is present and if it can dis-

tinguish between viruses that belong to different groups of the same family).

There is one exception to the above rule, however. If a scanner is unable to

distinguish between a particular subset of variants but can identify precisely enough

the other variants in the family and is sufficiently confident that the malware it has

found can be only one of the subset it cannot identify precisely, the scanner is allowed

to report the whole subset of variants.

To make the above clear, let us consider a particular example. Let us suppose

that a virus family, Foo, contains the variants A, B, C, D and E. Let us also suppose

that a particular scanner is unable to distinguish between the variants A, B, C and E—

but can identify the variant D exactly. It should, obviously, report the D variant as

Foo.D because it can identify it exactly. When reporting any of the other variants,

though, the scanner is allowed the following alternatives. First, it may report only the

family name—Foo. Second, it may report each and every one of the variants A, B, C

and E either as Foo.{A,B,C,E}, or as Foo.{A–C,E}.

2.7.3. Devolutions

There is one exception to the rule that variant names consist of uppercase let-

ters only. Currently it applies only to macro viruses but there are no fundamental rea-

sons why the need for it could not arise for other kinds of malware as well.

In the general case, a macro virus consists of a set of macros (although in

many cases the set contains only one element). Many macro viruses can replicate in

more than one way, e.g., on document open, on document close, on document save,

etc. Some macro viruses contain bugs and simply forget to copy some of their macros

when replicating in a particular way. This is called devolution (the opposite of evolu-

22

tion). However, the resulting subset of macros can also be viral. But, since it would be

a set of macros different from the original set, it would be a different virus. It would

still belong to the same virus family, obviously, but it would have to be assigned a

different variant name.

In such cases, the CARO Malware Naming Scheme states that instead of as-

signing the next consecutive variant name, the new variant name should be formed by

taking the original variant name and appending a number to it. For instance, if the vi-

rus W97M/Foo.A devolves under some circumstances, then the devolved variant

must be named W97M/Foo.A1, and not W97M/Foo.B. It is possible that the origi-

nal variant devolves in more than one way, or that the first devolution devolves fur-

ther. In such cases, consecutive numbers should be used: W97M/Foo.A2,

W97M/Foo.A3, etc. It is also possible that two different variants produce one and the

same devolution, i.e., that W97M/Foo.A and W97M/Foo.B both devolve to

W97M/Foo.A1. A typical example of devolving viruses are the viruses from the

WM/Rapi virus family ([Bontchev97]).

The selection of numbers should be consecutive, should start from 1, and

should reflect the order in which the devolutions are discovered. It does not have to

reflect the hierarchy of devolution, i.e., the numbers carry no information whether the

variant has devolved from the original variant (and from which one, if two different

variants produce the same devolution) or from some intermediate devolution. Note

also that the original variant is never assigned a number, its variant name consists of

letter(s) only. The devolution number must never be used by itself, it must be used

only as part of the variant name. For instance, the name WM/Foo.1 is incorrect speci-

fication of a devolution; it should be, e.g., WM/Foo.A1.

A scanner should report the devolution number only if it is capable of distin-

guishing between the main variant and its devolutions.

Finally, the following rules are used to determine whether a subset of the mac-

ros of the original variant are a devolution or not. First, the subset must be produced

in a “natural” way, i.e., during the natural replication of the virus, and not by artifi-

cially removing some of its macros, either manually or during (improper) disinfection.

If the removal of macros is not produced naturally, the resulting subset is considered a

new variant, not a devolution. A typical example is the WM/Dzt virus family, where

the B variant is produced from the A variant by some scanner incorrectly removing

only one of the A variant’s macros ([Bontchev97]).

Second, the subset must be incapable of reproducing the original set. If a virus

can, during natural replication, reduce the set of macros it consists of, but the reduced

set can later (also during natural replication) return to the original set, then the re-

duced set is still considered to be the original variant, it must not be given a new vari-

ant name or a new devolution number. A typical example of such viruses are the vi-

ruses in the WM/Johnny family.

2.8. Modifiers

The modifier part of the full malware name in the CARO Malware Naming

Scheme lists some properties of the malware, that are deemed important enough to be

conveyed to the user immediately (i.e., at the time when the malware is reported).

23

2.8.1. General Format

The general format of the modifier part is:

 [:<locale>][{@<at_modifier>}]

An earlier version of the CARO Malware Naming Scheme also allowed modi-

fiers for specifying the packer(s) with which the malware was compressed or the

polymorphic engine used by it. However, those modifiers were not used by anyone

and it was decided to remove them from the Naming Scheme.

2.8.2. Locale

The locale part is currently used only for macro malware, although there are

no reasons why, theoretically, other kinds of malware might appear that requires it. It

is used to indicate the language version of the platform, which language version is

required, in order for the malware to execute properly.

There are a few things that should be emphasized about the locale. First, it is

used to indicate a required language version of Microsoft Office, not a supported one.

For instance, if some macro malware has special code that allows it to run under the

German version of Microsoft Word, it will not get the :De locale identifier if it is also

runs under the English version of Word.

Second, the English language version is the default and is not denoted with

any special locale identifier.

Third, the locale identifier specifies a language version of an Office product,

not a country and not even a language. For instance, the :Tw locale identifier is used

because there was a Taiwanese version of Office, not a Chinese one.

Fourth, no distinction is made between the various minor language variants

(e.g., French vs. Canadian French, or Portuguese vs. Brazilian Portuguese, or Simpli-

fied Chinese vs. Mandarin).

Currently, the following locale identifiers are used:

Identifier Language

Br Brazilian

De German

Es Spanish

Fr French

He Hebrew

It Italian

Jp Japanese

NL Dutch

PL Polish

Ru Russian

Th Thai

Tw Chinese

If the need for more locale identifiers arises (e.g., because malware appears

that runs properly only on some other language version of some platform), the above

table will be extended.

24

If some malware can run on more than one of the language versions listed in

the above table (but cannot run under the English language version), it is acceptable to

use more than one locale identifier, separated by commas and surrounded by curly

braces like this: virus://WM/Foo.A:{De,Fr}. In such cases the locale identifi-

ers should be listed in alphabetical order. Currently no malware exists that would re-

quire this notation to be used, though.

In some cases (e.g., script malware) the malware might work only if existing

in Unicode (not regular ASCII) form. In such cases it is recommended to use the spe-

cial locale identifier :Uni. No such malware currently exists, though. Although sev-

eral existing script viruses spread in Unicode form, there is nothing in their code that

would prevent from working in ASCII form too.

2.8.3. At Modifiers

The at modifier part lists some properties of the malware which are deemed

critically important to report to the user as soon as the malware is discovered. This is

usually because the malware has some fast–spreading properties that would require a

higher priority of dealing with it than with any other kind of malware.

Originally, only the @mm modifier was allowed (see below for its description).

Currently several new ones have been added to the list. It is important to understand

that the list is dynamic. In the future CARO might decide to add additional modifiers

or to remove some of the existing ones.

It is possible that one and the same piece of malware has properties covered by

more than one modifier. In such cases the properties should be listed in alphabetical

order. Unlike the other cases when multiple kinds of the same part of the malware

name are used, in this case the different modifiers are not separated by commas and

are not enclosed in curly braces. Example: virus://W97M/Foo.A@irc@mm.

The modifiers currently allowed are described in the table below.

Modifier Description

@exp Malware that relies on the existence of some exploit or vulnerability, in order

to work properly.

@i An Internet worm, a virus that spreads directly from one computer to another

over the Internet not by using e–mail but by some other means. The

CodeRed virus is a typical example.

@irc A virus that uses IRC to spread. Note that this does not necessarily mean that

the virus is written as an IRC script. Use the IRC or PIRC platform name to

indicate the latter.

@m A slow–spreading mass–mailer. Such viruses usually e–mail themselves one

at a time, e.g., as a response to a received e–mail message.

@mm An explosively spreading mass–mailer. Its execution usually results in the

virus mass–mailing itself to all e–mail addresses it can find.

@p2p A virus designed to spread over the peer–to–peer networks.

@s A virus designed to spread via open network shares, i.e., shared network

drives that do not require a password to access them. Note that this is very

different from using a peer–to–peer network, although some people tend to

equate P2P networks with “sharing”.

It is important to note that a modifier should be used only if the malware does

indeed have the corresponding property, not when it just contains code for it. For in-

25

stance, a virus that contains mass–mailing code but which does not mass–mail itself

(e.g., because the mass–mailing code has a bug or because it is never invoked) must

not be given the @mm modifier.

2.9. Comment

Although great pains have been taken by the developers of the CARO Mal-

ware Naming Scheme in order to ensure that it is acceptable to all anti–virus produc-

ers, there will always be things that a particular producer would like to report about a

particular malware that are not included in the Scheme. For instance, some producers

want to specify that a particular virus is a worm, others want to specify that a virus is

corrupted, or compressed with something, or has a particular property, and so on.

In order to accommodate such needs, the Scheme allows any kind of comment

to be included after the name, separated from it with an exclamation mark. Techni-

cally, the comment is not part of the full malware name; it is only a reporting feature.

It can contain almost anything—the only restrictions are that it does not contain white

space and that it is present (after an exclamation mark) as the rightmost part of the

name. Every anti–virus producer is free to include in the comment whatever informa-

tion they want, in whatever format they want (provided that it does not include a

white space). In particular, it may contain characters that are otherwise not allowed in

the other components of the full malware name or that are used as separators, includ-

ing commas, dots, exclamation marks, etc.

3. Conclusion

In this paper we have explained why the malware naming confusion exists.

We have also described shortly the various alternative, less successful malware nam-

ing schemes and have given a full and detailed description of the current status of the

CARO Malware Naming Scheme. It is our hope and belief that the wide availability

of this paper will help reduce the existing malware naming confusion.

4. References

[Bontchev91] Vesselin Bontchev, Friðrik Skúlason, Dr. Alan Solomon, “Virus

Naming Scheme”, available electronically from

ftp://ftp.informatik.uni–hamburg.de/pub/virus/texts/tests/vtc/pc–

av/1994–07/naming.zip.

[Bontchev98] Vesselin Bontchev, “Methodology of Computer Anti–Virus Re-

search”, Ph.D. thesis, University of Hamburg, 1998.

[Bontchev97] Vesselin Bontchev, “Macro Virus Identification Problems”, Proc. 7th

Int. Virus Bull. Conf., 1997, pp. 175–196.

[Bontchev04] Vesselin Bontchev, “Anti–Virus Spamming and the Virus Naming

Mess—Part 2”, Virus Bull., July, 2004, pp. 13–15.

[FitzGerald02] Nick FitzGerald, “A Virus by Any Other Name: Towards the Revised

CARO Naming Convention”, Proc. AVAR’2002 Conf., Seoul, 2002,

pp. 141–166.

[Mitre] http://cve.mitre.org.

26

Appendix A—List of Permitted Platform Names

The following table lists all currently valid platform names, according to the

CARO Malware Naming Scheme. Malware for other platforms is possible but doesn’t

exist yet. CARO has agreed on several platform names for such platforms but they are

not made public, in order not to encourage the creation of malware for these plat-

forms. If/when malware for them appears, their official names will be made publicly

available.

If you have discovered malware and are not sure what its platform is, or think

that it is for a platform not listed in the table below, please contact a CARO member

and discuss the platform name with him/her instead of trying to be creative and in-

venting your own platform name.

Short Form Long Form Comments

A2M Access2Macro Macro malware for Microsoft Access 2.0

A97M Access97Macro Macro malware for Visual Basic for Applications

(VBA) for Access, that shipped in Access 97 and

later.

ABAP ABAP Malware for the SAP /R3 Advanced Business Ap-

plication Programming environment.

ACM AutoCADMacro VBA macro malware for AutoCAD r14 and later.

ActnS ActionScript Requires the Macromedia ActionScript interpreter

found in some ShockWave Flash (and possibly

other) animation players.

AM AccessMacro Macro malware for AccessBasic—an alternative

macro language for Microsoft Access.

AmigaOS AmigaOS Malware for the Amiga computers.

AplS AppleScript Malware for the AppleScript interpreter on Macin-

tosh computers.

APM AmiProMacro Macro malware for the AmiPro editor.

Apple2 AppleII Malware for the Apple][,][+, //, //e and //c comput-

ers.

AutoLISP AutoLISPScript Malware written in the LISP dialect used in Auto-

CAD.

BAT BAT Malware that requires a DOS, Windows or NT

command interpreter or close clone (e.g., 4DOS or

4NT).

BeOS BeOS Malware for BeOS.

Boot Boot Malware that resides in the Master Boot Record or

the DOS Boot Sector of the computer.

BSD BSD Malware specific to BSD–derived platforms. Unix

is still the preferred platform name.

27

C9M Corel9Macro VBA macro malware for Corel Draw! Version 9.0

and later.

CSC CorelScript Malware for the CorelScript interpreter in many

Corel products.

DCL DCLScript Malware written in the DCL scripting language.

DOS DOS Infects DOS COM and/or EXE (MZ) and/or SYS

format files and requires some version (any ver-

sion) of MS–DOS or a closely compatible OS (PC–

DOS, DR–DOS).

DSOS DSOS Malware for the Nintendo DS platform.

EPOC EPOC Malware for the EPOC OS before version 6.

HLP WinHelpScript Malware for the script interpreter of the WinHelp

display engine. (Note: this is not the correct plat-

form for JS or VBS script malware embedded in

HTML and ‘compiled’ into CHM help files.)

IDAS IDAScript Malware written in the scripting language sup-

ported by the disassembler IDA.

INF INFScript Malware for one of the Windows INF (installer)

script interpreters. We do not distinguish INF ‘ver-

sions’ or ‘type’ in the platform name.

IRC mIRCScript Malware for the mIRC script interpreter.

Java Java Malware for some version of the Java runtime envi-

ronment (standalone or browser–embedded).

JS JavaScript Malware for the Jscript and/or JavaScript inter-

preter. Hosting does not affect the platform desig-

nator. Standalone JS malware that requires MS JS

under WSH, HTML–embedded JS malware, and JS

malware embedded in Windows compiled HTML

help files (.CHM), all fall under this platform type.

Linux Linux Malware specific to the Linux platforms and others

closely based on it. Unix is still the preferred plat-

form name.

LM LotusMacro Macro malware for Lotus 1–2–3.

MacOS MacOS Malware for the Macintosh OS prior to OS X.

MeOS MenuetOS Malware for the Menuet operating system.

MPB MapBasic Malware written in MapBasic.

MSIL MSIL Malware that requires a Microsoft Intermediate

Language interpreter platform.

Mul Multi This is a pseudo–platform used for multi–platform

malware.

O97M Office97Macro This is a pseudo–platform name reserved for macro

28

malware that infects across at least two applications

within the Office 97 and later suites. The newer,

more generic pseudo–platform name Mul (or Multi

in long–form) is preferred for such cases.

OneC OneCScript Malware for the Russian accounting package 1C.

OS2 OS2 Malware for OS/2.

OSX OSX Malware for Macintosh OS X or a subsequent, es-

sentially similar, version. Use Unix instead when-

ever possible.

P98M Project98Macro Macro malware for VBA for Project, that shipped

in Project 97 and later.

PalmOS PalmOS Malware for PalmOS (any version).

Perl Perl Malware that requires a Perl interpreter. Hosting

does not affect the platform designator—standalone

Perl infectors under Unix(–like) shells, ones that

require Perl under WSH and HTML–embedded

Perl malware all fall under this platform type.

PHP PHPScript Malware that requires a PHP script interpreter.

PIRC PirchScript Malware for the Pirch script interpreter.

PP97M PowerPoint97Macro Macro malware for VBA for PowerPoint, that

shipped with Office 97 and later.

ProScript ProScript Malware written in ProScript.

PS PostScript Malware that requires a PostScript interpreter.

PSPOS PSPOS Malware for the Sony PlayStation Portable plat-

form.

PU97M Publisher97Macro Macro malware for VBA for Publisher 97 and later.

Py PythonScript Malware written in the language Python.

REG Registry Malware that requires a Windows registry file

(.REG) interpreter (we do not distinguish .REG

versions or ASCII vs. Unicode).

Ruby RubyScript Malware for Ruby.

SH ShellScript Malware that requires a Unix(–like) shell script in-

terpreter. Hosting does not affect the platform

name. Shell malware specific to Linux, Solaris,

HP–UX or other Unices, or specific to csh, ksh,

bash, tcsh or other interpreters all fall under this

platform name.

Solaris Solaris For Solaris–specific malware. Unix is still the pre-

ferred platform name.

SymbOS SymbianOS Malware for the Symbian (EPOC6 and above) OS.

29

TIOS TIOS Malware written for the Texas Instruments range of

programming calculators (e.g., TI-89).

Unix Unix This is the preferred platform name for binary

(ELF, COFF or a.out format) malware on Unix

platforms. For shell script malware, see the SH

name.

V5M Visio5Macro Macro malware for VBA for Visio, that shipped in

Visio 5.0 and later.

VBS VBScript Malware for the Visual Basic Script interpreter.

Hosting does not affect the platform designator.

Standalone VBS infectors that require VBS under

WSH, HTML–embedded VBS malware, and mal-

ware embedded in Windows compiled HTML help

files (.CHM), all fall under this platform type.

W16 Win16 Malware for one of the 16–bit Windows x86 OSes.

W2M Word2Macro Macro malware for the WordBasic interpreter in-

cluded in Microsoft Word 2.0.

W32 Win32 Malware for one of the ‘true’ 32–bit Windows x86

OSes (i.e. not Win32s, not CE, but Windows 9x,

ME, NT, 2000, XP on x86).

W64 Win64 Malware for the 64-bit versions of Windows.

W97M Word97Macro Macro malware for VBA for Word (that shipped in

Word 97) and/or later. Changes in VBA between

Word 97 and 2002 versions inclusive are suffi-

ciently slight that we do not distinguish platforms

even if the malware makes a version check or uses

one of the few VBA features added in the later

VBA versions.

WBS WinBATScript Malware written for the Wilson WindowWare

WinBatch interpreter.

WCE WinCE Malware for the PocketPC platform.

WHS WinHexScript Malware written in the scripting language sup-

ported by the binary editor WinHex.

WM WordMacro Macro malware for WordBasic as included in Mi-

crosoft Word 6.0, Word 7.0, Word 95 and Word for

Macintosh 5.x.

WPM WordProMacro Macro malware for the Lotus WordPro word proc-

essor.

X97M Excel97Macro Macro malware for VBA for Excel, that shipped in

Excel 97 and later.

XF ExcelFormula Malware written in the Excel Formula language

that has shipped in Excel since the very early days.

30

XM ExcelMacro Macro malware for VBA that shipped in Microsoft

Excel 5.0.

